TESTING BLACK HOLES USING X-RAY REFLECTION SPECTROSCOPY

COSIMO BAMBI

FUDAN UNIVERSITY

2019 CCNU-USTC JUNIOR COSMOLOGY SYMPOSIUM WUHAN, CHINA (26-29 APRIL 2019)

- 1915 \rightarrow General Relativity (Einstein)
- 1919 ightarrow Deflection of light by Sun (Eddington)
- **1**960s-Present \rightarrow Solar System Experiments
- 1970s-Present \rightarrow Binary Pulsars

These are all tests in the weak field regime!

 $\blacksquare \ \mathsf{Today} \to \mathsf{Black} \ \mathsf{Holes}$

Strong field regime

- "No-Hair Theorem" \rightarrow M, J, Q ($a_* = J/M^2$)
- Uncharged black holes \rightarrow Kerr solution
- Clear predictions on particle motion

It is remarkable that the spacetime metric around astrophysical black holes formed from gravitational collapse of stars/clouds should be well approximated by the "ideal" Kerr metric

- \blacksquare Initial deviations \rightarrow Quickly radiated away by GWs
- \blacksquare Accretion disk, nearby stars \rightarrow Negligible
- $\blacksquare \ Electric \ charge \rightarrow Negligible$

X-RAY REFLECTION SPECTROSCOPY

Disk-corona model

X-RAY REFLECTION SPECTROSCOPY

Corona models

X-RAY REFLECTION SPECTROSCOPY

Reflection spectrum

- Atomic physics → We can calculate the reflection spectrum at the emission point in the rest-frame of the gas in the disk
- Observations → We measure the reflection spectrum affected by relativistic effects (Doppler boosting, gravitational redshift, light bending)
- With the correct astrophysical model, we can learn about the spacetime metric in the strong gravity region

- RELXILL¹ is currently the most advanced relativistic reflection model for Kerr spacetimes
- $\blacksquare \ \mathsf{RELXILL} \sim \mathsf{RELCONV} \times \mathsf{XILLVER}$
- XILLVER: non-relativistic reflection model
- RELCONV: convolution model for the Kerr spacetime and a Novikov-Thorne accretion disk
- $\blacksquare \ \textbf{RELXILL} \rightarrow \textbf{Black hole spin measurements}$

¹Dauser et al., MNRAS 430, 1694 (2013); Garcia et al., ApJ 782, 76 (2014)

HOW CAN WE TEST THE KERR METRIC?

- Top-down approach: we test a specific alternative theory of gravity against Einstein's theory of General Relativity Problems:
 - A large number of theories of gravity...
 - Usually we do not know their rotating black hole solutions...
- Bottom-up approach: parametric black hole spacetimes in which deviations from the Kerr geometry are quantified by a number of "deformation parameters"

BOTTOM-UP APPROACH

- Parametrized Post-Newtonian (PPN) formalism
- Weak field limit: $M/r \ll 1$
- Solar System experiments

$$ds^{2} = -\left(1 - \frac{2M}{r} + \beta \frac{2M^{2}}{r^{2}} + \dots\right) dt^{2}$$
$$+ \left(1 + \gamma \frac{2M}{r} + \dots\right) \left(dx^{2} + dy^{2} + dz^{2}\right)$$

 $|eta - 1| < 2.3 \cdot 10^{-4}$ (Lunar Laser Ranging experiment) $|\gamma - 1| < 2.3 \cdot 10^{-5}$ (Cassini spacecraft)

In the General Relativity (Schwarzschild metric), $\beta=\gamma=1$

There are several parametrized black hole spacetimes in the literature. Johannsen metric²:

$$ds^{2} = -\frac{\tilde{\Sigma} \left(\Delta - a^{2}A_{2}^{2}\sin^{2}\theta\right)}{B^{2}}dt^{2} + \frac{\tilde{\Sigma}}{\Delta A_{5}}dr^{2} + \tilde{\Sigma}d\theta^{2}$$
$$-\frac{2a\left[(r^{2} + a^{2})A_{1}A_{2} - \Delta\right]\tilde{\Sigma}\sin^{2}\theta}{B^{2}}dtd\phi$$
$$+\frac{\left[(r^{2} + a^{2})^{2}A_{1}^{2} - a^{2}\Delta\sin^{2}\theta\right]\tilde{\Sigma}\sin^{2}\theta}{B^{2}}d\phi^{2},$$
$$\tilde{\Sigma} = r^{2} + a^{2}\cos^{2}\theta, \quad \Delta = r^{2} - 2Mr + a^{2},$$
$$B = (r^{2} + a^{2})A_{1} - a^{2}A_{2}\sin^{2}\theta$$

²Johannsen, PRD 88, 044002 (2013)

The functions f, A_1 , A_2 , and A_5 are defined as

$$f = \sum_{n=3}^{\infty} \epsilon_n \frac{M^n}{r^{n-2}}, \quad A_1 = 1 + \sum_{n=3}^{\infty} \alpha_{1n} \left(\frac{M}{r}\right)^n,$$
$$A_2 = 1 + \sum_{n=2}^{\infty} \alpha_{2n} \left(\frac{M}{r}\right)^n, \quad A_5 = 1 + \sum_{n=2}^{\infty} \alpha_{5n} \left(\frac{M}{r}\right)^n$$

There are 4 infinite sets of "deformation parameters":

$$\{\epsilon_n\}, \{\alpha_{1n}\}, \{\alpha_{2n}\}, \{\alpha_{5n}\}$$

If all deformation parameters vanish, we recover the Kerr solution

- RELXILL_NK³ is the natural extension of RELXILL to non-Kerr spacetimes
- **RELXILL_NK** \sim **RELCONV_NK** \times **XILLVER**
- We assume that atomic physics is the same (XILLVER) but we employ a metric more general than the Kerr solution and that includes the Kerr solution as a special case
- RELXILL_NK → Tests of the Kerr metric

³Bambi et al., ApJ 842, 76 (2017); Abdikamalov et al., arXiv:1902.09665

A public version⁴ of RELXILL_NK and its manual can be found at:

Johannsen metric with the deformation parameters α_{13} and α_{22}

⁴Current version is 1.3.2

RELXILL_NK

List of flavors:

- 1. RELLINE_NK
- 2. RELCONV_NK
- 3. RELXILL_NK
- 4. RELXILLCP_NK
- 5. RELXILLD_NK
- 6. RELLINELP_NK
- 7. RELXILLLP_NK
- 8. RELXILLLPCP_NK
- 9. RELXILLLPD_NK

Impact of the deformation parameter $\alpha_{\rm 13}$

Impact of the deformation parameter α_{22}

- 1H0707-495; Cao et al., PRL 120, 051101 (2018)
- Ark 564; Tripathi et al., PRD 98, 023018 (2018)
- GS 1354-645; Xu et al., ApJ 865, 134 (2018)
- Ton S180, RBS 1124, Swift J0501.9-3239, Ark 120, 1H0419-577, PKS 0558-504, Fairall 9; Tripathi et al., ApJ 874, 135 (2019)
- MCG-6-30-15; Tripathi et al., ApJ 875, 56 (2019)
- etc.

1H0707-495, Ark 564, GS 1354-645

Constraints on a_{*} and $\alpha_{\rm 13}$ from 1H0707–495, Ark 564, and GS 1354–645

Constraints on a_* and ϵ_3 from Ark 564 and GS 1354–645

Constraints on a_* and α_{13}/α_{22} from 1H0419–577

Observations

Mission	Observation ID	Exposure (ks)
NuSTAR	60001047002	23
	60001047003	127
	60001047005	30
XMM-Newton	0693781201	134
	0693781301	134
	0693781401	49

Light curves of *NuSTAR*/FPMA, *NuSTAR*/FPMB and *XMM-Newton*/EPIC-Pn

Constraints on a_* and α_{13}

Constraints on a_* and α_{22}

Constraints on a_* and ϵ_3

- RELXILL_NK (with public version)
- "Preliminary" observational constraints on some deformation parameters

Developing RELXILL_NK

- 1. Atomic physics calculations
- 2. Accretion disk model
- 3. Corona model
- 4. Minor relativistic effects
- Selecting the most suitable sources/data for our tests
- Testing more deviations from standard predictions

Source Selection

- 1. AGN probably better than binaries
- 2. Very high spin ($a_* > 0.9$)
- 3. No absorbers
- High resolution at the iron line + Data up to 50-100 keV (e.g. XMM-Newton + NuSTAR)
- 5. Prominent iron line
- 6. $L \sim 0.05 0.30 L_{\rm Edd}$ ($R_{\rm in} = R_{\rm ISCO}$)
- 7. Lamppost coronas?

THANK YOU!

Spectra of the best-fit models with the corresponding components and data to best-fit model ratios for a variable ϵ_3

